Designs Of Metareflectors Based On Nanodisk And Annular Hole Arrays With Polarization Independence, Switching, And Broad Bandwidth Characteristics

OPTICAL MATERIALS EXPRESS(2021)

引用 19|浏览2
暂无评分
摘要
We propose two tunable metareflectors (MRs) composed of a suspending nanodisk and an annular hole on silicon (Si) substrate with aluminum (Al) mirrors atop. They are denoted as MR-1 and MR-2 for the former and latter, respectively. The proposed MRs exhibit high-efficient cyan-magenta-yellow (CMY) color filtering, and ultrabroad tuning range characteristics. The electromagnetic energy of the resonant wavelength is confined within the suspending nanostructure and bottom Al mirror and then performed a perfect absorption. By changing the height between suspending nanostructure and the bottom Al mirror, MRs exhibit active tuning and single-/dual-resonance switching characteristics spanning the entire visible spectra range. Furthermore, the resonant wavelengths of MRs are sensitive to the surrounding ambient media, which are red-shifted and modulated from single-to dual-resonance by changing the environmental refraction index. The corresponding sensitivities are 500 nm/RIU and 360 nm/RIU for MR-1, 289 nm/RIU and 270 nm/RIU for MR-2, respectively. These results provide an effective strategy for use in high-resolution displays, high-sensitive sensors, optical switches, optical communications, and flexible virtual reality (VR)/augmented reality (AR) applications. (c) 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要