Gyrokinetic benchmark of the electron temperature-gradient instability in the pedestal region (vol 28, 062505, 2021)

PHYSICS OF PLASMAS(2023)

引用 2|浏览11
暂无评分
摘要
Transport from turbulence driven by the electron temperature-gradient (ETG) instability is likely a major source of electron heat losses through the pedestal. Due to extreme gradients and strong shaping, ETG instabilities in the pedestal are distinct from those in the core, having, for example, multiple branches (toroidal and slab) in different wavenumber ranges. Due to its importance for pedestal transport, and its rather exotic character, a rigorous multi-code benchmarking exercise is imperative. Here, we describe such an exercise, wherein we have carried out a detailed comparison of local linear pedestal ETG simulations using three gyrokinetic codes, CGYRO, GEM, and GENE and testing different geometric parameters (such as circular, Miller, and equilibrium EFIT geometry). The resulting linear frequencies, growth rates, and eigenfunctions show very good agreement between the codes in the three types of employed geometries. A nonlinear benchmark between CGYRO and GENE is also described, exhibiting good agreement (a maximum of 20% difference in the heat fluxes computed) at two locations in the pedestal. This lays the foundation for confidently modeling ETG turbulence in the pedestal. Published under an exclusive license by AIP Publishing.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要