Line Identification Of Boron And Nitrogen Emissions In Extreme- And Vacuum-Ultraviolet Wavelength Ranges In The Impurity Powder Dropping Experiments Of The Large Helical Device And Its Application To Spectroscopic Diagnostics

PLASMA SCIENCE & TECHNOLOGY(2021)

引用 4|浏览30
暂无评分
摘要
An impurity powder dropper was installed in the 21st campaign of the Large Helical Device experiment (Oct. 2019-Feb. 2020) under a collaboration between the National Institute for Fusion Science and the Princeton Plasma Physics Laboratory for the purposes of real-time wall conditioning and edge plasma control. In order to assess the effective injection of the impurity powders, spectroscopic diagnostics were applied to observe line emission from the injected impurity. Thus, extreme-ultraviolet (EUV) and vacuum-ultraviolet (VUV) emission spectra were analyzed to summarize observable impurity lines with B and BN powder injection. Emission lines released from B and N ions were identified in the EUV wavelength range of 5-300 angstrom measured using two grazing incidence flat-field EUV spectrometers and in the VUV wavelength range of 300-2400 angstrom measured using three normal incidence 20 cm VUV spectrometers. BI-BV and NIII-NVII emission lines were identified in the discharges with the B and BN powder injection, respectively. Useful B and N emission lines which have large intensities and are isolated from other lines were successfully identified as follows: BI (1825.89, 1826.40) angstrom (blended), BII 1362.46 angstrom, BIII (677.00, 677.14, 677.16) angstrom (blended), BIV 60.31 angstrom, BV 48.59 angstrom, NIII (989.79, 991.51, 991.58) angstrom (blended), NIV 765.15 angstrom, NV (209.27, 209.31) angstrom (blended), NVI 1896.80 angstrom, and NVII 24.78 angstrom. Applications of the line identifications to the advanced spectroscopic diagnostics were demonstrated, such as the vertical profile measurements for the BV and NVII lines using a space-resolved EUV spectrometer and the ion temperature measurement for the BII line using a normal incidence 3 m VUV spectrometer.
更多
查看译文
关键词
plasma spectroscopy, extreme ultraviolet, vacuum ultraviolet, magnetically confined fusion, impurity seeding, wall conditioning
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要