Fibroblast Promotes Head And Neck Squamous Cell Carcinoma Cell Invasion Through Mechanical Barriers In 3d Collagen Microenvironments

ACS APPLIED BIO MATERIALS(2020)

引用 11|浏览2
暂无评分
摘要
Cancer metastasis involves not only cancer cells but also fibroblasts and the surrounding collagen matrices. Previous studies have reported that in tumor tissues, cancer cells and fibroblasts surrounded by dense collagen are often associated with a high risk of cancer metastasis. However, the mechanism of the interaction between the cancer cells, fibroblasts, and the surrounding collagen matrices in vivo to promote cancer cell invasion in different collagen concentration environments remains unclear. To address this issue, we cocultured head and neck squamous cell carcinoma (OECM-1 cells) and human dermal fibroblasts (HDFs) to form 3D spheroids, embedded in collagen gel with different concentrations to delineate their roles and their interactions in cancer cell invasion. We showed that in single -species spheroids, the OECM-1 cells could not remodel the high-concentration (8 mg/mL) collagen matrices to invade into the surrounding collagen. In contrast, in the coculture spheroids, the HDF cells could remodel the collagen matrices, via MMP-meditated collagen degradation, to increase the invasion capability of OECM-1 cells. In the case of low-concentration (2 mg/mL) collagen matrices, both HDF and OECM-1 cells in the coculture spheroids could independently invade into the surrounding collagen via force remodeling of collagen. Our results revealed that the assistance of HDFs was critical for OECM-1 cell invasion into the surrounding extracellular matrix with high collagen concentration, high storage modulus, and small pore sizes. These insightful results shed light on the possible optimal invasion strategy of cancer tumors in vivo in response to different storage moduli of surrounding collagen matrices.
更多
查看译文
关键词
collagen concentration, 3D coculture spheroids of fibroblasts and cancer cells, force remodeling of collagen, cancer invasion capability, MMP-meditated collagen degradation, 3D collagen matrices
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要