Optimal Energy Management In A Range Extender Phev Using A Cascaded Dynamic Programming Approach

PROCEEDINGS OF THE ASME 11TH ANNUAL DYNAMIC SYSTEMS AND CONTROL CONFERENCE, 2018, VOL 2(2018)

引用 2|浏览1
暂无评分
摘要
Dynamic programming is widely used to benchmark the performance of a hybrid electric vehicle. It is also well documented that it is a very computationally heavy procedure depending on the number of states and control inputs in the problem formulation. In this paper we investigate the possibility of reduction in the computational time by splitting the number of states and control inputs between two models and applying dynamic programming individually, using the output of one as an input to the other and hence cascading the two models. A range extended hybrid electric vehicle powertrain architecture is modeled with four states and four control inputs, which is considered as the full model. Further, the states and control inputs of the battery and engine are separated from the other states, splitting them between the two new DP models. The vehicle performance estimated from this 'cascaded models approach' is compared with that from the full model. Initial comparisons show a very good match with minor differences in performance and considerable a reduction in computation time from around 6 hours to around a minute.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要