Microtubule assembly by soluble tau impairs vesicle endocytosis and excitatory neurotransmission via dynamin sequestration in Alzheimer’s disease synapse model

biorxiv(2021)

引用 0|浏览1
暂无评分
摘要
Elevation of soluble wild-type (WT) tau occurs in synaptic compartments in Alzheimer’s disease. We addressed whether tau elevation affects synaptic transmission at the calyx of Held in brainstem slices. Whole-cell loading of WT human tau (h-tau) in presynaptic terminals at 10-20 µM caused microtubule (MT) assembly and activity-dependent rundown of excitatory neurotransmission. Capacitance measurements revealed that the primary target of WT h-tau is vesicle endocytosis. Blocking MT assembly using nocodazole prevented tau-induced impairments of endocytosis and neurotransmission. Immunofluorescence imaging analyses revealed that MT assembly by WT h-tau loading was associated with an increased bound fraction of the endocytic protein dynamin. A synthetic dodecapeptide corresponding to dynamin-1-pleckstrin-homology domain inhibited MT-dynamin interaction and rescued tau-induced impairments of endocytosis and neurotransmission. We conclude that elevation of presynaptic WT tau induces de novo assembly of MTs, thereby sequestering free dynamins. As a result, endocytosis and subsequent vesicle replenishment are impaired, causing activity-dependent rundown of neurotransmission. Significance Statement Wild-type human recombinant tau loaded in rodent presynaptic terminals inhibited vesicle endocytosis, thereby causing activity-dependent rundown of excitatory transmission. This endocytic block is caused by a sequestration of dynamin by excess microtubules newly assembled by tau and can be rescued by a peptide inhibiting the microtubules-dynamin interaction, or by the microtubule disassembler nocodazole. Thus, synaptic dysfunction can be induced by pathological increase of endogenous soluble tau in Alzheimer disease slice model. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
关键词
synapse,alzheimers,vesicle endocytosis,soluble tau,microtubule assembly
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要