Distinguishing excess mutations and increased cell death based on variant allele frequencies

biorxiv(2022)

引用 1|浏览16
暂无评分
摘要
Tumors often harbor orders of magnitude more mutations than healthy tissues. The increased number of mutations may be due to an elevated mutation rate or frequent cell death and correspondingly rapid cell turnover, or a combination of the two. It is difficult to disentangle these two mechanisms based on widely available bulk sequencing data, where sequences from individual cells are intermixed and, thus, the cell lineage tree of the tumor cannot be resolved. Here we present a method that can simultaneously estimate the cell turnover rate and the rate of mutations from bulk sequencing data. Our method works by simulating tumor growth and finding the parameters with which the observed data can be reproduced with maximum likelihood. Applying this method to a real tumor sample, we find that both the mutation rate and the frequency of death may be high. Author Summary Tumors frequently harbor an elevated number of mutations, compared to healthy tissue. These extra mutations may be generated either by an increased mutation rate or the presence of cell death resulting in increased cellular turnover and additional cell divisions for tumor growth. Separating the effects of these two factors is a nontrivial problem. Here we present a method which can simultaneously estimate cell turnover rate and genomic mutation rate from bulk sequencing data. Our method is based on the estimation of the parameters of a generative model of tumor growth and mutations. Applying our method to a human hepatocellular carcinoma sample reveals an elevated per cell division mutation rate and high cell turnover. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要