Machine Learning to Estimate Surface Roughness from Satellite Images

REMOTE SENSING(2021)

引用 20|浏览0
暂无评分
摘要
We apply the Support Vector Regression (SVR) machine learning model to estimate surface roughness on a large alluvial fan of the Kosi River in the Himalayan Foreland from satellite images. To train the model, we used input features such as radar backscatter values in Vertical-Vertical (VV) and Vertical-Horizontal (VH) polarisation, incidence angle from Sentinel-1, Normalised Difference Vegetation Index (NDVI) from Sentinel-2, and surface elevation from Shuttle Radar Topographic Mission (SRTM). We generated additional features (VH/VV and VH-VV) through a linear data fusion of the existing features. For the training and validation of our model, we conducted a field campaign during 11-20 December 2019. We measured surface roughness at 78 different locations over the entire fan surface using an in-house-developed mechanical pin-profiler. We used the regression tree ensemble approach to assess the relative importance of individual input feature to predict the surface soil roughness from SVR model. We eliminated the irrelevant input features using an iterative backward elimination approach. We then performed feature sensitivity to evaluate the riskiness of the selected features. Finally, we applied the dimension reduction and scaling to minimise the data redundancy and bring them to a similar level. Based on these, we proposed five SVR methods (PCA-NS-SVR, PCA-CM-SVR, PCA-ZM-SVR, PCA-MM-SVR, and PCA-S-SVR). We trained and evaluated the performance of all variants of SVR with a 60:40 ratio using the input features and the in-situ surface roughness. We compared the performance of SVR models with six different benchmark machine learning models (i.e., Gaussian Process Regression (GPR), Generalised Regression Neural Network (GRNN), Binary Decision Tree (BDT), Bragging Ensemble Learning, Boosting Ensemble Learning, and Automated Machine Learning (AutoML)). We observed that the PCA-MM-SVR perform better with a coefficient of correlation (R = 0.74), Root Mean Square Error (RMSE = 0.16 cm), and Mean Square Error (MSE = 0.025 cm2). To ensure a fair selection of the machine learning model, we evaluated the Akaike's Information Criterion (AIC), corrected AIC (AICc), and Bayesian Information Criterion (BIC). We observed that SVR exhibits the lowest values of AIC, corrected AIC, and BIC of all the other methods; this indicates the best goodness-of-fit. Eventually, we also compared the result of PCA-MM-SVR with the surface roughness estimated from different empirical and semi-empirical radar backscatter models. The accuracy of the PCA-MM-SVR model is better than the backscatter models. This study provides a robust approach to measure surface roughness at high spatial and temporal resolutions solely from the satellite data.

更多
查看译文
关键词
surface roughness, Sentinel-1, Sentinel-2, machine learning models, AutoML, backscatter models
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要