Comparative Analysis of Eight Mitogenomes of Bark Beetles and Their Phylogenetic Implications

INSECTS(2021)

引用 8|浏览24
暂无评分
摘要
Simple Summary

Many bark beetles are destructive pests in coniferous forests and cause extensive ecological and economic losses worldwide. Comparative studies of the structural characteristics of mitogenomes and phylogenetic relationships of bark beetles can improve our understanding of mitogenome evolution. In this study, we sequenced eight mitogenomes of bark beetles. Our results show that the use of start and stop codons, the abundance of amino acids, and the relative frequency of codon use are conserved among the eight bark beetles. Different regions of tRNA exhibit different degrees of conservatism. Together with the analysis of evolutionary rates and genetic distance among bark beetle species, our results reveal phylogenetic relationships among bark beetles of the subfamily Scolytinae.

Many bark beetles of the subfamily Scolytinae are the most economically important insect pests of coniferous forests worldwide. In this study, we sequenced the mitochondrial genomes of eight bark beetle species, including Dendroctonus micans, Orthotomicus erosus, Polygraphus poligraphus, Dryocoetes hectographus, Ips nitidus, Ips typographus, Ips subelongatus, and Ips hauseri, to examine their structural characteristics and determine their phylogenetic relationships. We also used previously published mitochondrial genome sequence data from other Scolytinae species to identify and localize the eight species studied within the bark beetle phylogeny. Their gene arrangement matched the presumed ancestral pattern of these bark beetles. Start and stop codon usage, amino acid abundance, and the relative codon usage frequencies were conserved among bark beetles. Genetic distances between species ranged from 0.037 to 0.418, and evolutionary rates of protein-coding genes ranged from 0.07 for COI to 0.69 for ND2. Our results shed light on the phylogenetic relationships and taxonomic status of several bark beetles in the subfamily Scolytinae and highlight the need for further sequencing analyses and taxonomic revisions in additional bark beetle species.

更多
查看译文
关键词
bark beetle, Scolytinae, mitochondrial genome, tRNA, phylogeny, genetic distances
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要