Efficient privacy-preserving inference for convolutional neural networks

arxiv(2022)

引用 0|浏览2
暂无评分
摘要
The processing of sensitive user data using deep learning models is an area that has gained recent traction. Existing work has leveraged homomorphic encryption (HE) schemes to enable computation on encrypted data. An early work was CryptoNets, which takes 250 seconds for one MNIST inference. The main limitation of such approaches is that of the expensive FFT-like operations required to perform operations on HE-encrypted ciphertext. Others have proposed the use of model pruning and efficient data representations to reduce the number of HE operations required. We focus on improving upon existing work by proposing changes to the representations of intermediate tensors during CNN inference. We construct and evaluate private CNNs on the MNIST and CIFAR-10 datasets, and achieve over a two-fold reduction in the number of operations used for inferences of the CryptoNets architecture.
更多
查看译文
关键词
convolutional neural networks,privacy-preserving
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要