Evaluation of depth-wise post-gel polymerisation shrinkage behaviour of flowable dental composites

Journal of the Mechanical Behavior of Biomedical Materials(2021)

引用 5|浏览16
暂无评分
摘要
Short fibre reinforced flowable dental composites are gaining acceptance over particulate filled composites due to their competence to impart improved physio-mechanical properties and capability to prevent crack propagation. However, limited research exists to assess their overall post-gel shrinkage behaviour, which is an important factor to determine marginal seal around restoration and hence its longevity. In this paper, depth-wise post-gel shrinkage strain and the resulting factors such as degree of conversion and rheological behaviour of flowable fibre reinforced composite (FRC) containing 5% weight fraction of 5 μm diameter, 350 μm length S-Glass fibres in UDMA/TEGDMA mixture along with 50% strontium filler particles were investigated. Post-gel shrinkage strain was measured using an array of optical fibre Bragg grating sensors (FBGs) of diameter 250 μm and length 1 mm each embedded at three different depths (depth 0 mm, depth 2.5 mm and depth 5 mm from curing light tip) within the flowable dental composite samples. The rheological behaviour during the polymerisation process was carried out using dynamic oscillatory tests. To evaluate the conversion of CC during polymerisation, degree of conversion tests were conducted by using FTIR spectroscopy. The results obtained for FRC samples were further compared with that of particulate filled composite (PFC) samples, with 55% strontium filler particles only within the same resin system. The relationship between post-gel shrinkage strain at different depths, rheological behaviour and degree of conversion was also explored.
更多
查看译文
关键词
Flowable dental composite,Low aspect ratio glass fibres,Post-gel polymerisation shrinkage strain,Fibre-bragg grating sensor
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要