Broadly directed SARS-CoV-2-specific CD4+T cell response includes frequently detected peptide specificities within the membrane and nucleoprotein in patients with acute and resolved COVID-19

PLOS PATHOGENS(2021)

引用 34|浏览16
暂无评分
摘要
Author summaryThe SARS-CoV-2 genome encodes for 25 different viral proteins. However, many immunological studies have focused on the immune response against the spike protein. This current study was designed to get a detailed understanding of the breadth and specificity of the CD4+ T cell response directed against the other structural proteins, namely the envelope (E), membrane (M) and nucleoprotein (N) using a comprehensive overlapping peptide set in a cohort of patients during early and resolved COVID-19. We detected a universally broad T cell response with on average more than 20 peptide responses per patient. Three peptides elicited CD4+ T cell responses in more than 55% of all patients, two located within the M protein, and one located within the N protein. These peptides were further defined in terms of length and HLA restriction, and we developed a novel MHC class II tetramer based on this data, which enabled us to investigate the ex vivo phenotype of SARS-CoV-2-specific CD4+ T cells in one patient.This large immunological data set on individual immune responses will be useful for further detailed studies on the immunopathogenesis of SARS-CoV-2 infection and vaccine design. The aim of this study was to define the breadth and specificity of dominant SARS-CoV-2-specific T cell epitopes using a comprehensive set of 135 overlapping 15-mer peptides covering the SARS-CoV-2 envelope (E), membrane (M) and nucleoprotein (N) in a cohort of 34 individuals with acute (n = 10) and resolved (n = 24) COVID-19. Following short-term virus-specific in vitro cultivation, the single peptide-specific CD4+ T cell response of each patient was screened using enzyme linked immuno spot assay (ELISpot) and confirmed by single-peptide intracellular cytokine staining (ICS) for interferon-gamma (IFN-gamma) production. 97% (n = 33) of patients elicited one or more N, M or E-specific CD4+ T cell responses and each patient targeted on average 21.7 (range 0-79) peptide specificities. Overall, we identified 10 N, M or E-specific peptides that showed a response frequency of more than 36% and five of them showed high binding affinity to multiple HLA class II binders in subsequent in vitro HLA binding assays. Three peptides elicited CD4+ T cell responses in more than 55% of all patients, namely Mem_P30 (aa146-160), Mem_P36 (aa176-190), both located within the M protein, and Ncl_P18 (aa86-100) located within the N protein. These peptides were further defined in terms of length and HLA restriction. Based on this epitope and restriction data we developed a novel DRB*11 tetramer (Mem_aa145-164) and examined the ex vivo phenotype of SARS-CoV-2-specific CD4+ T cells in one patient. This detailed characterization of single T cell peptide responses demonstrates that SARS-CoV-2 infection universally primes a broad T cell response directed against multiple specificities located within the N, M and E structural protein.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要