Improved Approximation Schemes for Dominating Set Problems in Unit Disk Graphs

arxiv(2021)

引用 0|浏览1
暂无评分
摘要
We present two (exponentially) faster PTAS's for dominating set problems in unit disk graphs. Given a geometric representation of a unit disk graph, our PTAS's that find $(1+\epsilon)$-approximate solutions to the Minimum Dominating Set (MDS) and the Minimum Connected Dominating Set (MCDS) of the input graph in time $n^{O(1/\epsilon)}$. This can be compared to the best known $n^{O(1/\epsilon \log {1/\epsilon})}$-time PTAS by Nieberg and Hurink [WAOA'05] for MDS that only uses graph structures and an $n^{O(1/\epsilon^2)}$-time PTAS for MCDS by Zhang, Gao, Wu, and Du [J Glob Optim'09]. Our key ingredients are improved dynamic programming algorithms that depend exponentially on more essential 1-dimensional "widths" of the problems.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要