The oxidative degradation of Calmagite using added and in situ generated hydrogen peroxide catalysed by manganese(II) ions: Efficacy evaluation, kinetics study and degradation pathways

CHEMOSPHERE(2022)

引用 1|浏览0
暂无评分
摘要
Manganese (II) ions (Mn(II)) catalyse the oxidative degradation of Calmagite (CAL, 2-hydroxy-1-(2-hydroxy-5methylphenylazo)-4-naphthalenesulfonic acid) at room temperature using added and in situ generated hydrogen peroxide (H2O2), using 1,2-dihydroxybenzene-3,5-disulfonate, disodium salt and monohydrate (Tiron) as the co-catalyst for the in situ generation of H2O2. The percentage of CAL degradation with the in situ generated H2O2 was 91.1 % after 30 min which is lower than that in the added H2O2/Mn(II) system (96.0 %). A one-eighth-lives method was applied to investigate the kinetic parameters in the added H2O2 system, with and without Mn (II), involving phosphate, carbonate, and two biological buffers at different pHs. Percarbonate (HCO4-) was found to be the main reactive species for CAL degradation in the added H2O2 system buffered by carbonate in the absence of Mn(II). Manganese (IV) = O (Mn(IV) = O) and manganese(V) = O (Mn(V) = O) are the main reactive species in the added H2O2/Mn(II) system buffered by carbonate and non-carbonate buffers respectively. pH 8.5 was the optimum pH for CAL degradation when buffered by carbonate, while pH 10.0 is the best pH for the systems not using carbonate buffer. Using a high performance liquid chromatography/electrospray ionisation mass spectrometer (HPLC/ESI-MS), the degradation intermediates of CAL were identified as 1-amino-2-naphthol-4-sulfonate ion, 1-amino-2-naphthol-4-sulfinic ion, 1-amino-2-naphthol, and 1-nitroso-2-naphthol.
更多
查看译文
关键词
Catalysis, Azo dye, Carbonate, Decolourisation, Reaction mechanism
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要