Survival-Assured Liver Injury Preconditioning (Salic) Enables Robust Expansion Of Human Hepatocytes In Fah(-/-)Rag2(-/-)Il2rg(-/-) Rats

ADVANCED SCIENCE(2021)

引用 3|浏览14
暂无评分
摘要
Although liver-humanized animals are desirable tools for drug development and expansion of human hepatocytes in large quantities, their development is restricted to mice. In animals larger than mice, a precondition for efficient liver humanization remains preliminary because of different xeno-repopulation kinetics in livers of larger sizes. Since rats are ten times larger than mice and widely used in pharmacological studies, liver-humanized rats are more preferable. Here, Fah(-/-)Rag2(-/-)IL2rg(-/-) (FRG) rats are generated by CRISPR/Cas9, showing accelerated liver failure and lagged liver xeno-repopulation compared to FRG mice. A survival-assured liver injury preconditioning (SALIC) protocol, which consists of retrorsine pretreatment and cycling 2-(2-nitro-4-trifluoromethylbenzoyl)-1,3-cyclohexanedione (NTBC) administration by defined concentrations and time intervals, is developed to reduce the mortality of FRG rats and induce a regenerative microenvironment for xeno-repopulation. Human hepatocyte repopulation is boosted to 31 +/- 4% in rat livers at 7 months after transplantation, equivalent to approximately a 1200-fold expansion. Human liver features of transcriptome and zonation are reproduced in humanized rats. Remarkably, they provide sufficient samples for the pharmacokinetic profiling of human-specific metabolites. This model is thus preferred for pharmacological studies and human hepatocyte production. SALIC may also be informative to hepatocyte transplantation in other large-sized species.
更多
查看译文
关键词
bioreactor, humanized liver, liver xeno-repopulation, pharmacological study
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要