Video Annotation for Visual Tracking via Selection and Refinement.

ICCV(2021)

引用 5|浏览30
暂无评分
摘要
Deep learning based visual trackers entail offline pre-training on large volumes of video datasets with accurate bounding box annotations that are labor-expensive to achieve. We present a new framework to facilitate bounding box annotations for video sequences, which investigates a selection-and-refinement strategy to automatically improve the preliminary annotations generated by tracking algorithms. A temporal assessment network (T-Assess Net) is proposed which is able to capture the temporal coherence of target locations and select reliable tracking results by measuring their quality. Meanwhile, a visual-geometry refinement network (VG-Refine Net) is also designed to further enhance the selected tracking results by considering both target appearance and temporal geometry constraints, allowing inaccurate tracking results to be corrected. The combination of the above two networks provides a principled approach to ensure the quality of automatic video annotation. Experiments on large scale tracking benchmarks demonstrate that our method can deliver highly accurate bounding box annotations and significantly reduce human labor by 94.0%, yielding an effective means to further boost tracking performance with augmented training data.
更多
查看译文
关键词
Motion and tracking
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要