Diagnostic chest X-rays and breast cancer risk among women with a hereditary predisposition to breast cancer unexplained by a BRCA1 or BRCA2 mutation

BREAST CANCER RESEARCH(2021)

引用 5|浏览28
暂无评分
摘要
Background Diagnostic ionizing radiation is a risk factor for breast cancer (BC). BC risk increases with increased dose to the chest and decreases with increased age at exposure, with possible effect modification related to familial or genetic predisposition. While chest X-rays increase the BC risk of BRCA1/2 mutation carriers compared to non-carriers, little is known for women with a hereditary predisposition to BC but who tested negative for a BRCA1 or BRCA2 (BRCA1/2) mutation. Methods We evaluated the effect of chest X-rays from diagnostic medical procedures in a dataset composed of 1552 BC cases identified through French family cancer clinics and 1363 unrelated controls. Participants reported their history of X-ray exposures in a detailed questionnaire and were tested for 113 DNA repair genes. Logistic regression and multinomial logistic regression models were used to assess the association with BC. Results Chest X-ray exposure doubled BC risk. A 3% increased BC risk per additional exposure was observed. Being 20 years old or younger at first exposure or being exposed before first full-term pregnancy did not seem to modify this risk. Birth after 1960 or carrying a rare likely deleterious coding variant in a DNA repair gene other than BRCA1/2 modified the effect of chest X-ray exposure. Conclusion Ever/never chest X-ray exposure increases BC risk 2-fold regardless of age at first exposure and, by up to 5-fold when carrying 3 or more rare variants in a DNA repair gene. Further studies are needed to evaluate other DNA repair genes or variants to identify those which could modify radiation sensitivity. Identification of subpopulations that are more or less susceptible to ionizing radiation is important and potentially clinically relevant.
更多
查看译文
关键词
Breast cancer, X-ray exposure, Low dose, High-risk population, DNA repair genes
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要