Instability Of The Body-Centered Cubic Lattice Within The Sticky Hard Sphere And Lennard-Jones Model Obtained From Exact Lattice Summations

PHYSICAL REVIEW E(2021)

引用 5|浏览0
暂无评分
摘要
A smooth path of rearrangement from the body-centered cubic (bcc) to the face-centered cubic (fcc) lattice is obtained by introducing a single parameter to lattice vectors of a cuboidal unit cell. As a result, we obtain analytical expressions in terms of lattice sums for the cohesive energy where the interaction is described by a Lennard-Jones (LJ) interaction potential or a sticky hard-sphere (SHS) model with a r(-n) long-range attractive term. These lattice sums are evaluated to computer precision by expansions in terms of a fast converging Bessel function series. Applying the whole range of lattice parameters for the SHS and LJ potentials we prove that the bcc phase is unstable (or, at best, metastable) toward distortion into the fcc phase in the low temperature and pressure limit. Even if more accurate potentials are used, such as the extended LJ potential for argon or chromium, the bcc phase remains unstable. This strongly indicates that the appearance of a low temperature bcc phase for several elements in the periodic table is due to higher than two-body forces in atomic interactions.
更多
查看译文
关键词
sticky hard sphere,cubic lattice,body-centered,lennard-jones
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要