Coexpression network architecture reveals the brain-wide and multiregional basis of disease susceptibility

NATURE NEUROSCIENCE(2021)

引用 34|浏览46
暂无评分
摘要
Gene networks have yielded numerous neurobiological insights, yet an integrated view across brain regions is lacking. We leverage RNA sequencing in 864 samples representing 12 brain regions to robustly identify 12 brain-wide, 50 cross-regional and 114 region-specific coexpression modules. Nearly 40% of genes fall into brain-wide modules, while 25% comprise region-specific modules reflecting regional biology, such as oxytocin signaling in the hypothalamus, or addiction pathways in the nucleus accumbens. Schizophrenia and autism genetic risk are enriched in brain-wide and multiregional modules, indicative of broad impact; these modules implicate neuronal proliferation and activity-dependent processes, including endocytosis and splicing, in disease pathophysiology. We find that cell-type-specific long noncoding RNA and gene isoforms contribute substantially to regional synaptic diversity and that constrained, mutation-intolerant genes are primarily enriched in neurons. We leverage these data using an omnigenic-inspired network framework to characterize how coexpression and gene regulatory networks reflect neuropsychiatric disease risk, supporting polygenic models.
更多
查看译文
关键词
Autism spectrum disorders,Biochemical networks,Gene expression,Genetics of the nervous system,Transcriptomics,Biomedicine,general,Neurosciences,Behavioral Sciences,Biological Techniques,Neurobiology,Animal Genetics and Genomics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要