Single-Cell Analysis Reveals The Pan-Cancer Invasiveness-Associated Transition Of Adipose-Derived Stromal Cells Into Col11a1-Expressing Cancer-Associated Fibroblasts

PLOS COMPUTATIONAL BIOLOGY(2021)

引用 21|浏览6
暂无评分
摘要
During the last ten years, many research results have been referring to a particular type of cancer-associated fibroblasts associated with poor prognosis, invasiveness, metastasis and resistance to therapy in multiple cancer types, characterized by a gene expression signature with prominent presence of genes COL11A1, THBS2 and INHBA. Identifying the underlying biological mechanisms responsible for their creation may facilitate the discovery of targets for potential pan-cancer therapeutics. Using a novel computational approach for single-cell gene expression data analysis identifying the dominant cell populations in a sequence of samples from patients at various stages, we conclude that these fibroblasts are produced by a pan-cancer cellular transition originating from a particular type of adipose-derived stromal cells naturally present in the stromal vascular fraction of normal adipose tissue, having a characteristic gene expression signature. Focusing on a rich pancreatic cancer dataset, we provide a detailed description of the continuous modification of the gene expression profiles of cells as they transition from APOD-expressing adipose-derived stromal cells to COL11A1-expressing cancer-associated fibroblasts, identifying the key genes that participate in this transition. These results also provide an explanation to the well-known fact that the adipose microenvironment contributes to cancer progression.Author summary Computational analysis of rich gene expression data at the single-cell level from cancer biopsies can lead to biological discoveries about the nature of the disease. Using a computational methodology that identifies the gene expression profile of the dominant cell population for a particular cell type in the microenvironment of tumors, we observed that there is a remarkably continuous modification of this profile among patients, corresponding to a cellular transition. Specifically, we found that the starting point of this transition has a unique characteristic signature corresponding to cells that are naturally residing in normal adipose tissue. We also found that the endpoint of the transition has another characteristic signature corresponding to a particular type of cancer-associated fibroblasts with prominent expression of gene COL11A1, which has been found strongly associated with invasiveness, metastasis and resistance to therapy in multiple cancer types. Our results provide an explanation to the well-known fact that the adipose tissue contributes to cancer progression, shedding light on the biological mechanism by which tumor cells interact with the adipose microenvironment. We provide a detailed description of the changing profile during the transition, identifying associated genes as potential targets for pan-cancer therapeutics inhibiting the underlying mechanism.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要