Exploratory cuckoo search for solving single-objective optimization problems

SOFT COMPUTING(2021)

引用 30|浏览7
暂无评分
摘要
The cuckoo search (CS) algorithm is an effective optimization algorithm, but it is prone to stagnation in suboptimality because of some limitations in its exploration mechanisms. This paper introduces a variation of CS called exploratory CS (ECS), which incorporates three modifications to the original CS algorithm to enhance its exploration capabilities. First, ECS uses a special type of opposition-based learning called refraction learning to improve the ability of CS to jump out of suboptimality. Second, ECS uses the Gaussian perturbation to optimize the worst candidate solutions in the population before the discard step in CS. Third, in addition to the Lévy flight mutation method used in CS, ECS employs two mutation methods, namely highly disruptive polynomial mutation and Jaya mutation, to generate new improved candidate solutions. A set of 14 widely used benchmark functions was used to evaluate and compare ECS to three variations of CS:CS with Lévy flight (CS), CS with highly disruptive polynomial mutation (CS10) and CS with pitch adjustment mutation (CS11). The overall experimental and statistical results indicate that ECS exhibits better performance than all of the tested CS variations. Besides, the single-objective IEEE CEC 2014 functions were used to evaluate and compare the performance of ECS to six well-known swarm optimization algorithms: CS with Lévy flight, Grey wolf optimizer (GWO), distributed Grey wolf optimizer (DGWO), distributed adaptive differential evolution with linear population size reduction evolution (L-SHADE), memory-based hybrid Dragonfly algorithm and Fireworks algorithm with differential mutation. Interestingly, the results indicate that ECS provides competitive performance compared to the tested six well-known swarm optimization algorithms.
更多
查看译文
关键词
Cuckoo search, Refraction learning, Single-objective optimization, Mutation method
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要