Growth Dynamics Of Vertical And Lateral Layered Double Hydroxide Nanosheets During Electrodeposition

NANO LETTERS(2021)

引用 15|浏览13
暂无评分
摘要
Layered double hydroxides (LDHs) are a class of lamellar materials with a wide range of potential catalytic applications. LDHs form from positively charged 2D atomic layers separated by charge-balancing anions and solvent molecules. Typically, nanoscale LDH sheets can grow vertical or parallel to a substrate, exposing their different active facets. These two growth modes of LDH nanosheets have a significant impact on their electrocatalytic properties, yet the details of their growth remain unknown, hindering our ability to design and synthesize high-performance LDH-based electrocatalysts. Here, we investigate the growth pathways of LDH nanosheets using in situ electrochemical liquid-phase transmission electron microscopy (TEM) and show that the growth modes of LDH nanosheets can be controlled by tuning the precursor concentrations. Moreover, our observations reveal that LDH nanosheets grow via two pathways: (1) monomer addition, where the adatoms are heterogeneously deposited onto the LDH nanosheets, and (2) coalescence, where adjacent nanosheets merge together.
更多
查看译文
关键词
Layered double hydroxide (LDH), oriented growth, electrochemical liquid cell, in situ TEM
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要