Large Variability In Response To Projected Climate And Land-Use Changes Among European Bumblebee Species

GLOBAL CHANGE BIOLOGY(2021)

引用 11|浏览5
暂无评分
摘要
Bumblebees (Bombus ssp.) are among the most important wild pollinators, but many species have suffered from range declines. Land-use change, agricultural intensification, and the associated loss of habitat have been identified as drivers of the observed dynamics, amplifying pressures from a changing climate. However, these drivers are still underrepresented in continental-scale species distribution modeling. Here, we project the potential distribution of 47 European bumblebee species in 2050 and 2080 from existing European-scale distribution maps, based on a set of climate and land-use futures simulated through a regional integrated assessment model and consistent with the RCP-SSP scenario framework. We compare projections including (1) dynamic climate and constant land use (CLIM); (2) constant climate and dynamic land use (LU); and (3) dynamic climate and dynamic land use (COMB) to disentangle the effects of land use and climate change on future habitat suitability, providing the first rigorous continental-scale assessment of linked climate-land-use futures for bumblebees. We find that direct climate impacts, although variable across species, dominate responses for most species, especially under high-end climate change scenarios (up to 99% range loss). Land-use impacts are highly variable across species and scenarios, ranging from severe losses (up to 75% loss) to considerable gains (up to 68% gain) of suitable habitat extent. Rare species thereby tend to be disproportionally affected by both climate and land-use change. COMB projections reveal that land use may amplify, attenuate, or offset changes to suitable habitat extent expected from climate impact depending on species and scenario. Especially in low-end climate change scenarios, land use has the potential to become a game changer in determining the direction and magnitude of range changes, indicating substantial potential for targeted conservation management.
更多
查看译文
关键词
integrated assessment, MaxEnt, pollinators, RCP, species distribution modeling, SSP
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要