Robust Persistent Homology using Elastic Functional Data Analysis

arxiv(2022)

引用 0|浏览3
暂无评分
摘要
Persistence landscapes are functional summaries of persistence diagrams designed to enable analysis of the diagrams using tools from functional data analysis. They comprise a collection of scalar functions such that birth and death times of topological features in persistence diagrams map to extrema of functions and intervals where they are non-zero. As a consequence, variation in persistence diagrams is encoded in both amplitude and phase components of persistence landscapes. Through functional data analysis of persistence landscapes, under an elastic Riemannian metric, we show how meaningful statistical summaries of persistence landscapes (e.g., mean, dominant directions of variation) can be obtained by decoupling their amplitude and phase variations. This decoupling is achieved via optimal alignment, with respect to the elastic metric, of the persistence landscapes. The estimated phase functions are tied to the resolution parameter that determines the filtration of simplicial complexes used to construct persistence diagrams. For a dataset obtained under geometric, scale and sampling variabilities, the phase function prescribes an optimal rate of increase of the resolution parameter for enhancing the topological signal in a persistence diagram. The proposed approach adds substantially to the statistical analysis of data objects with rich structure compared to past studies. In particular, we focus on two sets of data that have been analyzed in the past, brain artery trees and images of prostate cancer cells, and show that separation of amplitude and phase of persistence landscapes is beneficial in both settings.
更多
查看译文
关键词
robust persistent homology
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要