Genetic Variability of the SARS-CoV-2 Pocketome.

JOURNAL OF PROTEOME RESEARCH(2021)

引用 18|浏览3
暂无评分
摘要
In the absence of effective treatment, COVID-19 is likely to remain a global disease burden. Compounding this threat is the near certainty that novel coronaviruses with pandemic potential will emerge in years to come. Pan-coronavirus drugs-agents active against both SARS-CoV-2 and other coronaviruses-would address both threats. A strategy to develop such broad-spectrum inhibitors is to pharmacologically target binding sites on SARS-CoV-2 proteins that are highly conserved in other known coronaviruses, the assumption being that any selective pressure to keep a site conserved across past viruses will apply to future ones. Here we systematically mapped druggable binding pockets on the experimental structure of 15 SARS-CoV-2 proteins and analyzed their variation across 27 α- and β-coronaviruses and across thousands of SARS-CoV-2 samples from COVID-19 patients. We find that the two most conserved druggable sites are a pocket overlapping the RNA binding site of the helicase nsp13 and the catalytic site of the RNA-dependent RNA polymerase nsp12, both components of the viral replication-transcription complex. We present the data on a public web portal (https://www.thesgc.org/SARSCoV2_pocketome/), where users can interactively navigate individual protein structures and view the genetic variability of drug-binding pockets in 3D.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要