Connecting geometry and performance of two-qubit parameterized quantum circuits

QUANTUM(2022)

引用 3|浏览1
暂无评分
摘要
Parameterized quantum circuits (PQCs) are a central component of many variational quantum algorithms, yet there is a lack of understanding of how their parameterization impacts algorithm performance. We initiate this discussion by using principal bundles to geometrically characterize two-qubit PQCs. On the base manifold, we use the Mannoury-Fubini-Study metric to find a simple equation relating the Ricci scalar (geometry) and concurrence (entanglement). fly calculating the Ricci scalar during a variational quantum eigensolver (VQE) optimization process, this offers us a new perspective to how and why Quantum Natural Gradient outperforms the standard gradient descent. We argue that the key to the Quantum Natural Gradient's superior performance is its ability to find regions of high negative curvature early in the optimization process. These regions of high negative curvature appear to be important in accelerating the optimization process.
更多
查看译文
关键词
quantum,two-qubit
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要