Combining neuroimaging and behavior to discriminate children with attention deficit-hyperactivity disorder with and without prenatal alcohol exposure

BRAIN IMAGING AND BEHAVIOR(2021)

引用 7|浏览17
暂无评分
摘要
In many patients, ostensible idiopathic attention deficit-hyperactivity disorder (ADHD) may actually stem from covert prenatal alcohol exposure (PAE), a treatment-relevant distinction. This study attempted a receiver-operator characteristic (ROC) classification of children with ADHD into those with PAE (ADHD+PAE) and those without (ADHD-PAE) using neurobehavioral instruments alongside magnetic resonance spectroscopy (MRS) and diffusion tensor imaging (DTI) of supraventricular brain white matter. Neurobehavioral, MRS, and DTI endpoints had been suggested by prior findings. Participants included children aged 8–13 years, 23 with ADHD+PAE, 19 with familial ADHD-PAE, and 28 typically developing (TD) controls. With area-under-the-curve (AUC) >0.90, the Conners 3 Parent Rating Scale Inattention (CIn) and Hyperactivity/Impulsivity (CHp) scores and the Behavioral Regulation Index (BRI) of the Behavior Rating Inventory of Executive Function (BRIEF2) excellently distinguished the clinical groups from TD, but not from each other (AUC < 0.70). Combinations of MRS glutamate (Glu) and N -acetyl-compounds (NAA) and DTI mean diffusivity (MD), axial diffusivity (AD), radial diffusivity (RD), and fractional anisotropy (FA) yielded “good” (AUC > 0.80) discrimination. Neuroimaging combined with CIn and BRI achieved AUC 0.72 and AUC 0.84, respectively. But neuroimaging combined with CHp yielded 14 excellent combinations with AUC ≥ 0.90 (all p < 0.0005), the best being Glu·AD·RD·CHp/(NAA·FA) (AUC 0.92, sensitivity 1.00, specificity 0.82, p < 0.0005). Using Cho in lieu of Glu yielded AUC 0.83. White-matter microstructure and metabolism may assist efforts to discriminate ADHD etiologies and to detect PAE, beyond the ability of commonly used neurobehavioral measures alone.
更多
查看译文
关键词
Fetal alcohol spectrum disorder,Attention deficit hyperactivity disorder,Magnetic resonance spectroscopy,Diffusion tensor imaging,White matter
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要