Development of a mechanically matched silk scaffolded 3D clear cell renal cell carcinoma model

Materials Science and Engineering: C(2021)

引用 8|浏览11
暂无评分
摘要
Development of a 3D, biomaterials-based model for clear cell renal cell carcinoma (ccRCC) would be advantageous for understanding disease progression in vitro. This study demonstrated the development of lyophilized silk scaffolds that mechanically match the experimentally determined Young's modulus for ex vivo ccRCC samples and normal kidney tissue. Scaffolds fabricated from silk solutions ranging from 3 to 12% (w/v) were evaluated through mechanical testing. Following mechanical characterization of ccRCC samples, it was demonstrated that 6% silk scaffolds mechanically matched ccRCC samples. No impact of pathological grade and stage on the calculated ccRCC modulus was observed and all tumors evaluated mechanically matched the 6% silk scaffold formulation. Stratifying tissue specimens based upon histological observations (e.g. evidence of high levels of collagen deposition) resulted in no significant differences between groups. To investigate the impact of a mechanically matched culturing environment on in vitro ccRCC disease characteristics a model ccRCC cell line, 786-O, was utilized. Scaffolded 786-O cells demonstrated increased lipid droplet accumulation, a hallmark of ccRCC, compared to standard two-dimensional (2D) culture conditions. Additionally, scaffolded 786-O cells demonstrated increased expression of genes associated with ccRCC aggressiveness (ex. VEGFA, TNF, and IL-6) or immune markers under investigation as therapeutic targets (ex. PDL1, CTLA4). Comparison with 786-O cells grown on non-mechanically matched scaffolds demonstrated that these improved ccRCC characteristics were driven by scaffold modulus. Overall, our findings support the use of silk scaffolds in replicating physiologic tumor behavior for clear cell renal cell carcinoma and provide a platform for investigating disease progression.
更多
查看译文
关键词
Scaffold,Mechanical testing,Tissue engineering,Cancer modeling
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要