The Best Of Both Worlds: Apomixis And Sexuality Co-Occur In Species Of Microlicia, Melastomataceae

PLANT SPECIES BIOLOGY(2021)

引用 7|浏览4
暂无评分
摘要
Apomixis, the asexual formation of embryos and seeds, occurs in approximately 18% of angiosperm families. Melastomataceae exhibits a remarkable number of apomictic species, distributed among different tribes. This mode of reproduction has been elucidated in Miconieae, but remains unclarified for other groups, such as Microlicieae. Although apomixis has been previously described for Microlicieae species, the cytological basis for this phenomenon is entirely unknown in this group. Thus, populations of Microlicia fasciculata and M. polystemma were used in order to (a) investigate the presence of autonomous apomixis; (b) verify if this mode of reproduction leads to polyembryony; and (c) investigate whether apomixis may occur in parallel with the sexual process. We tested these species for autonomous fruit set and polyembryony, and pollen viability, and analyzed pollen tube growth. Anatomical techniques were used to elucidate the micro- and megasporogenesis and gametogenesis. The species showed autonomous fruit and seed formation and exhibited polyembryony. Apospory and adventitious embryony were the developmental mechanisms of apomixis in M. fasciculata and M. polystemma, respectively. Both species exhibited low pollen viability. However, some viable pollen, reduced embryo sac formation, natural pollination and pollen tube growth enable sexual reproduction and characterize these species as facultative apomicts. The independence of pollinators for fruit set, uniparental reproduction and the possibility of sexual reproduction, confer reproductive assurance and flexibility, bringing together advantages of sexual and asexual reproduction. In this sense, apomixis may have played an important role in the evolution and diversification of Microlicia, a widely distributed genus in the Brazilian Cerrado.
更多
查看译文
关键词
adventitious embryony, apomictic species, apospory, pollen development, polyembryony
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要