Modification Of Catalytic Properties Of Hollandite Manganese Oxide By Ag Intercalation For Oxidative Acetalization Of Ethanol To Diethoxyethane

ACS CATALYSIS(2021)

引用 13|浏览11
暂无评分
摘要
The effect of addition of Ag to the catalytic properties of hollandite manganese oxide (HMO) was investigated for the oxidative acetalization of ethanol to diethoxyethane. Based on analysis with HRTEM, XRD, and EXAFS, Ag introduced onto HMO by deposition/precipitation was found to be present in different forms in the final catalyst depending on the calcination temperature. It could exist as nanoparticles on the outside surface of HMO nanorods for samples calcined at 60 degrees C, and as Ag atoms intercalated into the tunnels of the HMO structure for samples calcined at 500 degrees C. NH3 desorption results showed that intercalation of Ag resulted in stronger Lewis acidic sites on HMO, which DFT computational results suggested to be due to Ag-induced electron redistribution in the HMO framework. The intercalation of Ag atoms also made the HMO more easily reducible by lowering the H-2 reduction temperature from 500 to 200 degrees C. Consequently, the sample with intercalated Ag was more active for ethanol oxidation to acetaldehyde, achieving nearly 100% conversion of ethanol and acetaldehyde by 360 degrees C, and acetalization of acetaldehyde with ethanol to produce diethoxyethane selectively, resulting in 93.5% diethoxyethane yield, which was 10% higher than with samples containing Ag nanoparticles on HMO. This study demonstrated a little-studied phenomenon in which a metal alters the catalytic properties of an oxide electronically but not structurally and without direct participation in the reaction.
更多
查看译文
关键词
metal intercalation, oxidative acetalization, diethoxyethane, hollandite, manganese oxide, silver
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要