Age-dependent alveolar epithelial plasticity orchestrates lung homeostasis and regeneration.

Cell stem cell(2021)

引用 56|浏览17
暂无评分
摘要
Regeneration of the architecturally complex alveolar niche of the lung requires precise temporal and spatial control of epithelial cell behavior. Injury can lead to a permanent reduction in gas exchange surface area and respiratory function. Using mouse models, we show that alveolar type 1 (AT1) cell plasticity is a major and unappreciated mechanism that drives regeneration, beginning in the early postnatal period during alveolar maturation. Upon acute neonatal lung injury, AT1 cells reprogram into alveolar type 2 (AT2) cells, promoting alveolar regeneration. In contrast, the ability of AT2 cells to regenerate AT1 cells is restricted to the mature lung. Unbiased genomic assessment reveals that this previously unappreciated level of plasticity is governed by the preferential activity of Hippo signaling in the AT1 cell lineage. Thus, cellular plasticity is a temporally acquired trait of the alveolar epithelium and presents an alternative mode of tissue regeneration in the postnatal lung.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要