A Shape Optimisation With The Isogeometric Boundary Element Method And Adjoint Variable Method For The Three-Dimensional Helmholtz Equation

COMPUTER-AIDED DESIGN(2022)

引用 6|浏览13
暂无评分
摘要
This paper presents a shape optimisation system to design the shape of an acoustically-hard object in the three-dimensional open space. The boundary element method (BEM) is suitable to analyse such an exterior field. However, the conventional BEM, which is based on piecewise polynomial shape and approximate (interpolation) functions, can require many design variables because they are usually chosen as a part of the nodes of the underlying boundary element mesh. In addition, it is not easy for the conventional method to compute the gradient of the sound pressure on the surface, which is necessary to compute the shape derivative of our interest, of a given object. To overcome these issues, we employ the isogeometric boundary element method (IGBEM), which was developed in our previous work. With using the IGBEM, we can design the shape of surfaces through control points of the NURBS surfaces of the target object. We integrate the IGBEM with the nonlinear programming software through the adjoint variable method (AVM), where the resulting adjoint boundary value problem can be also solved by the IGBEM with a slight modification. The numerical verification and demonstration validate our shape optimisation framework. (C) 2021 Elsevier Ltd. All rights reserved.
更多
查看译文
关键词
Boundary element method, Isogeometric analysis, Shape optimisation, Adjoint variable method, Nonlinear programming problem
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要