Electromechanically Active Pair Dynamics In A Gd-Doped Ceria Single Crystal

PHYSICAL CHEMISTRY CHEMICAL PHYSICS(2021)

引用 3|浏览12
暂无评分
摘要
Oxygen-defective ceria, e.g. Gd-doped ceria, shows giant electromechanical properties related to a complex local rearrangement of its lattice. Although they are not entirely identified, the electroactive mechanisms arise from cation and oxygen vacancy (V-O) pairs (i.e. Ce-V-O), and the local structural elastic distortion in their surroundings. Here, we study the geometry and behaviour of Ce-V-O pairs in a grain boundary-free bulk Ce0.9Gd0.1O1.95 single crystal under an AC electric field of ca. 11 kV cm(-1). The analysis was carried out through X-ray absorption spectroscopy (XAS) techniques at the Ce L-III edge. Using Density Functional Theory (DFT) calculations, we investigated the effects of the strain on density of states and orbitals at the valence band edge. Our research indicates that electrostriction increases at low temperatures. The electromechanical strain has a structural nature and can rise by one order of magnitude, i.e., from 5 x 10(-4) at room temperature to 5 x 10(-3) at -193 degrees C, due to an increase in the population of the electrically active pairs. At a constant V-O concentration, the material can thus configure heterogeneous pairs and elastic nanodomains that are either mechanically responsive or not.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要