Structural Analysis Of The Pten:P-Rex2 Signaling Complex Reveals How Cancer-Associated Mutations Coordinate To Hyperactivate Rac1

SCIENCE SIGNALING(2021)

引用 6|浏览17
暂无评分
摘要
The dual-specificity phosphatase PTEN functions as a tumor suppressor by hydrolyzing PI(3,4,5)P-3 to PI(4,5)P-2 to inhibit PI3K-AKT signaling and cellular proliferation. P-Rex2 is a guanine nucleotide exchange factor for Rho GTPases and can be activated by G beta gamma subunits downstream of G protein-coupled receptor signaling and by PI(3,4,5)P-3 downstream of receptor tyrosine kinases. The PTEN:P-Rex2 complex is a commonly mutated signaling node in metastatic cancer. Assembly of the PTEN:P-Rex2 complex inhibits the activity of both proteins, and its dysregulation can drive PI3K-AKT signaling and cellular proliferation. Here, using cross-linking mass spectrometry and functional studies, we gained mechanistic insights into PTEN:P-Rex2 complex assembly and coinhibition. We found that PTEN was anchored to P-Rex2 by interactions between the PDZ-interacting motif in the PTEN C-terminal tail and the second PDZ domain of P-Rex2. This interaction bridged PTEN across the P-Rex2 surface, preventing PI(3,4,5)P-3 hydrolysis. Conversely, PTEN both allosterically promoted an autoinhibited conformation of P-Rex2 and blocked its binding to G beta gamma. In addition, we observed that the PTEN-deactivating mutations and P-Rex2 truncations combined to drive Rac1 activation to a greater extent than did either single variant alone. These insights enabled us to propose a class of gain-of-function, cancer-associated mutations within the PTEN:P-Rex2 interface that uncouple PTEN from the inhibition of Rac1 signaling.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要