Surface electron accumulation and enhanced hydrogen evolution reaction in MoSe2 basal planes

Nano Energy(2021)

引用 32|浏览12
暂无评分
摘要
The spontaneous formation of surface electron accumulation (SEA) was observed in synthesized molybdenum diselenide (MoSe2) layered crystals with two-hexagonal (2 H) structure. An anomalously high electron concentration at the surface up to 1019 cm−3 is several orders of magnitude higher than that (3.6 × 1012 cm−3) of the inner bulk. The SEA is found to be generated easily by mechanical exfoliation and room temperature deselenization. Se-vacancies have been confirmed to be the major source resulting in SEA and n-type conductivity, and also the active sites for electrochemical catalysis in MoSe2. Noted that the SEA conjugated with the Se-vacancy-related surface defects enhances the electrochemical hydrogen evolution reaction (HER) activity substantially. The optimized HER efficiency with an overpotential at 0.17 V and Tafel slope at 60 mV/dec of the basal plane of 2 H-MoSe2 was achieved by the nitrogen plasma treatment, which has outperformed several nanostructures, thin films, and hybrid counterparts. This study reveals the intriguing surface-dominant electronic property and its effect on the HER enhancement of the basal plane, which is crucial for development of a stable, low-cost and highly efficient catalyst using 2 H-MoSe2.
更多
查看译文
关键词
Molybdenum diselenide,Surface electron accumulation,Selenium vacancy,Scanning tunneling microscopy,Angle-resolved photoemission spectroscopy,Hydrogen evolution reaction
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要