Dynamically Feasible Task Space Planning For Underactuated Aerial Manipulators

IEEE ROBOTICS AND AUTOMATION LETTERS(2021)

引用 10|浏览20
暂无评分
摘要
In this work, we address the problem of planning dynamically feasible trajectories for underactuated aerial manipulators to achieve a desired trajectory for the end effector. We consider a quadrotor equipped with an arbitrary n-joint articulated arm. We show that the combined underactuated system is differentially flat, however the flat outputs do not correspond directly to the motion of the end effector. We therefore develop a method which determines the family of flat output trajectories which will exactly produce any desired task trajectory, even in the case of dynamic maneuvers. We also give criteria on the manipulator geometry which will ensure certain important stability properties, informing hardware design. The entire approach is demonstrated in simulation for systems of varying geometry and number of joints. The simultaneous resolution of the kinematic and dynamic constraints allows these tasks to be performed dynamically without sacrificing accuracy.
更多
查看译文
关键词
Aerial systems, mechanics and control, underactuated robots, aerial manipulation, differential flatness, motion and path planning
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要