Submodel Decomposition Bounds For Influence Diagrams

THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE(2021)

引用 4|浏览264
暂无评分
摘要
Influence diagrams (IDs) are graphical models for representing and reasoning with sequential decision-making problems under uncertainty. Limited memory influence diagrams (LIMIDs) model a decision-maker (DM) who forgets the history in the course of making a sequence of decisions. The standard inference task in IDs and LIMIDs is to compute the maximum expected utility (MEU), which is one of the most challenging tasks in graphical models. We present a model decomposition framework in both IDs and LIMIDs, which we call submodel decomposition that generates a tree of single-stage decision problems through a tree clustering scheme. We also develop a valuation algebra over the submodels that leads to a hierarchical message passing algorithm that propagates conditional expected utility functions over a submodel-tree as external messages. We show that the overall complexity is bounded by the maximum tree-width over the sub-models, common in graphical model algorithms. Finally, we present a new method for computing upper bounds over a submodel-tree by first exponentiating the utility functions yielding a standard probabilistic graphical model as an upper bound and then applying standard variational upper bounds for the marginal MAP inference, yielding tighter upper bounds compared with state-of-the-art bounding schemes for the MEU task.
更多
查看译文
关键词
influence
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要