Characterization of stem cells from human ovarian follicular fluid; a potential source of autologous stem cell for cell-based therapy

HUMAN CELL(2021)

引用 4|浏览2
暂无评分
摘要
Human ovarian follicular fluid (HOFF) contains proteins, extracellular matrixes necessary for growth and maturation of oocytes as well as granulosa cells. Epithelial cells and stem cells can be isolated from HOFF. However, information regarding stem cells derived from HOFF is still lacking. The objectives of the present study were to isolate, characterize, and differentiate cells derived from HOFF. HOFF was collected during the routine aspiration of oocytes in an assisted fertilization program and subjected to cell isolation, characterization, and in vitro culture. After 24 h of culture, different cell morphologies including epithelial-like-, neural-like- and fibroblast-like cells were observed. Immunocytochemistry reveals the expression of pluripotent stem cell markers (OCT4, NANOG, SSEA4), epithelial marker (CK18), FSH- and LH-receptor. For in vitro culture, the isolated cells were continuously cultured in a growth medium; alpha MEM containing 10% FBS and epidermal growth factor (EGF). After 2 weeks of in vitro culture, cells with fibroblast-like morphology dominantly grow in the culture vessels and resemble mesenchymal stem cells (MSCs). HOFF-derived cells exhibited MSC expression of CD44, CD73, CD90, CD105, CD146, and STRO-1, and were capable of differentiation into osteoblasts, chondrocytes, and adipocytes. After induction of neural differentiation, HOFF-derived cells formed spheroidal structures and expressed neural stem cell markers including Nestin, β-tubulin III, and O4. Besides, the oocyte-like structure was observed after prolonged culture of HOFF. In conclusion, cells derived from follicular fluid exhibited stem cell characteristics, which could be useful for regenerative medicine applications and cell-based therapies.
更多
查看译文
关键词
Oocyte, Ovary, Ovarian follicular fluid-derived stem cells, Pluripotent stem cells, Mesenchymal differentiation, Neural differentiation, In vitro fertilization
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要