Optimization-Driven Scenario Grouping

INFORMS JOURNAL ON COMPUTING(2020)

引用 20|浏览56
暂无评分
摘要
Scenario decomposition algorithms for stochastic programs compute bounds by dualizing all nonanticipativity constraints and solving individual scenario problems independently. We develop an approach that improves on these bounds by reinforcing a carefully chosen subset of nonanticipativity constraints, effectively placing scenarios into groups. Specifically, we formulate an optimization problem for grouping scenarios that aims to improve the bound by optimizing a proxy metric based on information obtained from evaluating a subset of candidate feasible solutions. We show that the proposed grouping problem is NP-hard in general, identify a polynomially solvable case, and present two formulations for solving the problem: a matching formulation for a special case and a mixed-integer programming formulation for the general case. We use the proposed grouping scheme as a preprocessing step for a particular scenario decomposition algorithm and demonstrate its effectiveness in solving standard test instances of two-stage 0-1 stochastic programs. Using this approach, we are able to prove optimality for all previously unsolved instances of a standard test set. Additionally, we implement this scheme as a preprocessing step for PySP, a publicly available and widely used implementation of progressive hedging, and compare this grouping approach with standard grouping approaches on large-scale stochastic unit commitment instances. Finally, the idea is extended to propose a finitely convergent algorithm for two-stage stochastic programs with a finite feasible region.
更多
查看译文
关键词
stochastic programming, integer programming applications, computational methods
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要