Crystal Structure And Atomic Vacancy Optimized Thermoelectric Properties In Gadolinium Selenides

CHEMISTRY OF MATERIALS(2020)

引用 36|浏览8
暂无评分
摘要
Thermoelectric materials enable the energy conversion of waste heat into electricity, helpful to relieve global energy crisis. Here, we report a systematic investigation on high-temperature thermoelectric gadolinium selenides, cubic Gd3-xSe4 (x = 0.16, 0.21, and 0.25) and orthorhombic Gd2Se3-y (y = 0.02, 0.06, and 0.08). High energy synchrotron X-ray diffraction and total scattering have been used to investigate the crystallographic and local structures. Atomic-scale clusters of Gd vacancy in the cubic phase are observed by employing the reverse Monte Carlo simulation. For cubic Gd3-xSe4, adjusting Gd vacancy triggers the effect of multiple conduction bands, confirmed by the increase in effective masses. A reasonable peak zT of 0.27 is achieved at 850 K for Gd3-xSe4 (x = 0.16). On the other hand, tuning Se vacancy enables the optimization of electron concentration for the orthorhombic Gd2Se3-y. More significantly, its low deformation potential (Xi = 12 eV) gives rise to enhanced electron mobility and a higher peak zT of 0.54 at 850 K for Gd2Se3-y) , (y = 0.02). Intriguingly, a higher zT of 1.2 at 1200 K is reasonably predicted by quality factor analysis. This work extends the scope of high-temperature thermoelectric materials and facilitates the exploration of novel high-temperature thermoelectric materials.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要