Comparative transcriptomics and host-specific parasite gene expression profiles inform on drivers of proliferative kidney disease

SCIENTIFIC REPORTS(2021)

引用 12|浏览10
暂无评分
摘要
The myxozoan parasite, Tetracapsuloides bryosalmonae has a two-host life cycle alternating between freshwater bryozoans and salmonid fish. Infected fish can develop Proliferative Kidney Disease, characterised by a gross lymphoid-driven kidney pathology in wild and farmed salmonids. To facilitate an in-depth understanding of T. bryosalmonae -host interactions, we have used a two-host parasite transcriptome sequencing approach in generating two parasite transcriptome assemblies; the first derived from parasite spore sacs isolated from infected bryozoans and the second from infected fish kidney tissues. This approach was adopted to minimize host contamination in the absence of a complete T. bryosalmonae genome. Parasite contigs common to both infected hosts (the intersect transcriptome; 7362 contigs) were typically AT-rich (60–75% AT). 5432 contigs within the intersect were annotated. 1930 unannotated contigs encoded for unknown transcripts. We have focused on transcripts encoding proteins involved in; nutrient acquisition, host–parasite interactions, development, cell-to-cell communication and proteins of unknown function, establishing their potential importance in each host by RT-qPCR. Host-specific expression profiles were evident, particularly in transcripts encoding proteases and proteins involved in lipid metabolism, cell adhesion, and development. We confirm for the first time the presence of homeobox proteins and a frizzled homologue in myxozoan parasites. The novel insights into myxozoan biology that this study reveals will help to focus research in developing future disease control strategies.
更多
查看译文
关键词
Animal physiology,Computational biology and bioinformatics,Developmental biology,Disease model,Evolution,Gene ontology,Immune evasion,Immunology,Infection,Infectious diseases,Lymphoid tissues,Metabolism,Microbiology,Molecular biology,Molecular evolution,Parasitology,Pathogens,Physiology,Protein function predictions,Sequence annotation,Transcription,Transcriptomics,Zoology,Science,Humanities and Social Sciences,multidisciplinary
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要