Regulation Of Photosensation By Hydrogen Peroxide And Antioxidants In C. Elegans

PLOS GENETICS(2020)

引用 5|浏览13
暂无评分
摘要
Author summaryThe nematode C. elegans possesses a unique photoreceptor protein, LITE-1, which mediates a light-avoidance behavior upon light exposure. C. elegans avoids short-wavelength light, particularly UV light, providing a potential mechanism by which worms escape from the dangerous UV rays in the sunlight. However, it is not clear how LITE-1 is regulated. Here, we performed a genetic screen to identify genes regulating LITE-1. We uncovered six genes that when mutated suppress LITE-1 function. All these genes are involved in regenerating cellular antioxidants that function to clear reactive oxygen species, particularly hydrogen peroxide (H2O2), suggesting that the function of LITE-1 is vulnerable to H2O2. Indeed, we show that H2O2 exposure inhibits LITE-1 function, while antioxidants promote it. Notably, other sensory functions are relatively less sensitive to H2O2. As UV light illumination is known to generate H2O2 within the cell, this provides a potential mechanism to turn off LITE-1. Our results uncover a potential mechanism of LITE-1 regulation, where antioxidants and oxidants act to promote and suppress LITE-1 function, respectively.The eyeless C. elegans exhibits robust phototaxis behavior in response to short-wavelength light, particularly UV light. C. elegans senses light through LITE-1, a unique photoreceptor protein that belongs to the invertebrate taste receptor family. However, it remains unclear how LITE-1 is regulated. Here, we performed a forward genetic screen for genes that when mutated suppress LITE-1 function. One group of lite-1 suppressors are the genes required for producing the two primary antioxidants thioredoxin and glutathione, suggesting that oxidization of LITE-1 inhibits its function. Indeed, the oxidant hydrogen peroxide (H2O2) suppresses phototaxis behavior and inhibits the photoresponse in photoreceptor neurons, whereas other sensory behaviors are relatively less vulnerable to H2O2. Conversely, antioxidants can rescue the phenotype of lite-1 suppressor mutants and promote the photoresponse. As UV light illumination generates H2O2, we propose that upon light activation of LITE-1, light-produced H2O2 then deactivates LITE-1 to terminate the photoresponse, while antioxidants may promote LITE-1's recovery from its inactive state. Our studies provide a potential mechanism by which H2O2 and antioxidants act synergistically to regulate photosensation in C. elegans.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要