Efficient Multiscale FE-FFT-Based Modeling and Simulation of Macroscopic Deformation Processes with Non-linear Heterogeneous Microstructures

Lecture Notes in Applied and Computational Mechanics(2018)

引用 6|浏览1
暂无评分
摘要
The purpose of this work is the prediction of micromechanical fields and the overall material behavior of heterogeneous materials using an efficient and robust two-scale FE-FFT-based computational approach. The macroscopic boundary value problem is solved using the finite element (EL) method. The constitutively dependent quantities such as the stress tensor are determined by the solution of the local boundary value problem. The latter is represented by a periodic unit cell attached to each macroscopic integration point. The local algorithmic formulation is based on fast Fourier transforms (FFT), fixed-point and Newton-Krylov subspace methods (e.g. conjugate gradients). The handshake between both scales is defined through the Hill-Mandel condition. In order to ensure accurate results for the local fields as well as feasible overall computation times, an efficient solution strategy for two-scale full-field simulations is employed. As an example, the local and effective mechanical behavior of ferrit-perlit annealed elasto-viscoplastic 42CrMo4 steel is studied for three-point-bending tests. For simplicity, attention is restricted to the geometrically linear case and quasi-static processes.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要