Release of odorants from sediments of the largest drinking water reservoir in Shanghai: Influence of pH, temperature, and hydraulic disturbance.

Chemosphere(2020)

引用 6|浏览2
暂无评分
摘要
Endogenous pollution from sediments is gradually becoming a critical pollution source of the drinking water reservoir. Odorants can be released from sediments into the overlying water which further deteriorate the water quality of the drinking water reservoir. In this work, we set the sediment-overlying water systems under various water pH (6.5, 8 and 9), temperature (4, 20 and 30 °C) during 30 days and intermittent or continuous hydraulic disturbances (at 100 r/min or 200 r/min) in 5 days, and investigated the dynamic release of odorants from the drinking water reservoir sediments via using headspace solid-phase microextraction (HSPME) and gas chromatography-mass spectrometry (GC-MS). The result shows that weakly alkaline environment slightly but not significantly increased the concentration of dimethyl disulfide (DMDS) in the overlying water. Furthermore, low temperature promoted the release of bis(2-chloroisopropyl) ether (BCIE) and geosmin to 108.36 and 18.98 ng/L, respectively, while high temperature facilitated the DMDS release to 20.33 ng/L. Notably, hydraulic disturbances drastically elevated the level of seven odorants released from the sediments. Specially, benzaldehyde exhibited highest concentration at 260.50 ng/L. The continuous disturbance greatly enhanced the release of benzaldehyde, DMDS, dimethyl trisulfide (DMTS), BCIE and 1,4-dichloro-benzene (1,4-DCB) from sediments with a positive disturbance speed-dependence. However, the intermittent disturbance promoted higher level of geosmin in the overlying water compared to the continuous disturbance. Only continuous hydraulic disturbance at high speed could lead to the release of ethylbenzene from sediments, which was up to 4.89 ng/L in 12 h.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要