Epitaxial growth of high-k BaxSr1-xTiO3 thin films on SrTiO3 (001) substrates by atomic layer deposition

JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A(2020)

引用 8|浏览4
暂无评分
摘要
Atomic layer deposition (ALD) offers a viable route for the growth of thin and conformal films over 3D topographies and is becoming attractive as a method to grow films thin enough, and with sufficient dielectric constants (k), for the fabrication of next-generation dynamic random memories. The authors used ALD to grow thin (<= 15nm) BaxSr1-xTiO3 (BST) films that are epitaxially integrated to SrTiO3 (001) (STO) and Nb-doped SrTiO3 (001) (Nb:STO). Films of three compositions, which are x similar to 0.7, 0.5, and 0.3, and thicknesses of 7.8-14.9nm were grown at 1.05Torr and 225 degrees C using barium bis(triisopropylcyclopentadienyl), strontium bis(triisopropylcyclopentadienyl), titanium tetraisopropoxide, and H2O. Film compositions were controlled by changing cycle ratios (Ba:Sr, Ba:Ti, and Sr:Ti) and confirmed by in situ x-ray photoelectron spectroscopy. Films were amorphous as-deposited and required postdeposition vacuum annealing at 650-710 degrees C to crystallize. Epitaxy was confirmed with x-ray diffraction and transmission electron microscopy. Only BST (00l) out-of-plane diffraction signals were detected. Capacitance-voltage (C-V) measurements revealed that BST thin films grown by ALD have dielectric constant values ranging from 210 for Ba0.71Sr0.26TiO3 to 368 for Ba0.48Sr0.43TiO3.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要