Distributed High Temperature Monitoring of SMF under Electrical Arc Discharges Based on OFDR.

SENSORS(2020)

引用 8|浏览5
暂无评分
摘要
The distributed high temperature measurement of an optical fiber subjected to electric arc discharges based on optical frequency-domain reflectometry is experimentally demonstrated. The distributed temperature profile is attained in an open glow regime of a few milliamps with maximum detectable temperature up to 2100 +/- 20 degrees C. The discharge arc-induced softened length of the fiber and mechanical stress are measured and statistically analyzed in terms of the correlation of the Rayleigh spectra. The large wavelength scanning range of OFDR enables much higher accuracy for the delay time measurement with a minimum measured delay of 40 fs. The delay shift over the entire heating range for a single discharge duration is statistically calculated by using a temporal correlation method. The reliability of the thermal sensitivity coefficient as 10 pm/degrees C for telecom single mode fiber (SMF, @1550 nm) is quantitatively analyzed and evaluated by the correlation coefficient. Lastly, a spectral mapping method is employed in spectrum monitoring for discharge dynamic impact on the optical path length (OPL) and local Rayleigh scatter.
更多
查看译文
关键词
optical fiber sensors,optical frequency-domain reflectometry,Rayleigh backscattering,distributed temperature sensing
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要