On the Potential of Silicon Intermediate Band Solar Cells

ENERGIES(2020)

引用 6|浏览27
暂无评分
摘要
Intermediate band solar cells (IBSCs) have an efficiency limit of 63.2%, which is significantly higher than the 40.7% limit for conventional single gap solar cells. In order to achieve the maximum efficiency, the total bandgap of the cell should be in the range of similar to 2 eV. However, that fact does not prevent other cells based on different semiconductor bandgaps from benefiting from the presence of an intermediate band (IB) within their bandgap. Since silicon (1.12 eV bandgap) is the dominant material in solar cell technology, it is of interest to determine the limit efficiency of a silicon IBSC, because even a modest gain in efficiency could trigger a large commercial interest if the IB is implemented at low cost. In this work we study the limit efficiency of silicon-based IBSCs considering operating conditions that include the use of non-ideal photon casting between the optical transitions, different light intensities and Auger recombination. The results lead to the conclusion that a silicon IBSC, operating under the conventional model in which the sub-bandgaps add to the total silicon gap, provides an efficiency gain if operated in the medium-high concentration range. The performance of these devices is affected by Auger recombination only under extremely high concentrations.
更多
查看译文
关键词
intermediate band solar cells,silicon,limit efficiency,non-overlapped coefficients,Auger recombination
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要