All-in-One Deposition to Synergistically Manipulate Perovskite Growth for High-Performance Solar Cell.

RESEARCH(2020)

引用 33|浏览14
暂无评分
摘要
Nonradiative recombination losses originating from crystallographic distortions and issues occurring upon interface formation are detrimental for the photovoltaic performance of perovskite solar cells. Herein, we incorporated a series of carbamide molecules (urea, biuret, or triuret) consisting of both Lewis base (-NH2) and Lewis acid (-C=O) groups into the perovskite precursor to simultaneously eliminate the bulk and interface defects. Depending on the different coordination ability with perovskite component, the incorporated molecules can either modify crystallization dynamics allowing for large crystal growth at low temperature (60 degrees C), associate with antisite or undercoordinated ions for defect passivation, or accumulate at the surface as an energy cascade layer to enhance charge transfer, respectively. Synergistic benefits of the above functions can be obtained by rationally optimizing additive combinations in an all-in-one deposition method. As a result, a champion efficiency of 21.6% with prolonged operational stability was achieved in an inverted MAPbI(3) perovskite solar cell by combining biuret and triuret additives. The simplified all-in-one fabrication procedure, adaptable to different types of perovskites in terms of pure MAPbI(3), mixed perovskite, and all-inorganic perovskite, provides a cost-efficient and reproducible way to obtain high-performance inverted perovskite solar cells.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要