Axion Dark Matter Experiment: Detailed design and operations

REVIEW OF SCIENTIFIC INSTRUMENTS(2021)

引用 14|浏览91
暂无评分
摘要
Axion dark matter experiment ultra-low noise haloscope technology has enabled the successful completion of two science runs (1A and 1B) that looked for dark matter axions in the 2.66-3.1 mu eV mass range with Dine-Fischler-Srednicki-Zhitnisky sensitivity [Du et al., Phys. Rev. Lett. 120, 151301 (2018) and Braine et al., Phys. Rev. Lett. 124, 101303 (2020)]. Therefore, it is the most sensitive axion search experiment to date in this mass range. We discuss the technological advances made in the last several years to achieve this sensitivity, which includes the implementation of components, such as the state-of-the-art quantum-noise-limited amplifiers and a dilution refrigerator. Furthermore, we demonstrate the use of a frequency tunable microstrip superconducting quantum interference device amplifier in run 1A, and a Josephson parametric amplifier in run 1B, along with novel analysis tools that characterize the system noise temperature. Published under an exclusive license by AIP Publishing.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要