DECONbench: a benchmarking platform dedicated to deconvolution methods for tumor heterogeneity quantification

BMC BIOINFORMATICS(2021)

引用 3|浏览21
暂无评分
摘要
Background Quantification of tumor heterogeneity is essential to better understand cancer progression and to adapt therapeutic treatments to patient specificities. Bioinformatic tools to assess the different cell populations from single-omic datasets as bulk transcriptome or methylome samples have been recently developed, including reference-based and reference-free methods. Improved methods using multi-omic datasets are yet to be developed in the future and the community would need systematic tools to perform a comparative evaluation of these algorithms on controlled data. Results We present DECONbench, a standardized unbiased benchmarking resource, applied to the evaluation of computational methods quantifying cell-type heterogeneity in cancer. DECONbench includes gold standard simulated benchmark datasets, consisting of transcriptome and methylome profiles mimicking pancreatic adenocarcinoma molecular heterogeneity, and a set of baseline deconvolution methods (reference-free algorithms inferring cell-type proportions). DECONbench performs a systematic performance evaluation of each new methodological contribution and provides the possibility to publicly share source code and scoring. Conclusion DECONbench allows continuous submission of new methods in a user-friendly fashion, each novel contribution being automatically compared to the reference baseline methods, which enables crowdsourced benchmarking. DECONbench is designed to serve as a reference platform for the benchmarking of deconvolution methods in the evaluation of cancer heterogeneity. We believe it will contribute to leverage the benchmarking practices in the biomedical and life science communities. DECONbench is hosted on the open source Codalab competition platform. It is freely available at: https://competitions.codalab.org/competitions/27453 .
更多
查看译文
关键词
Benchmarking platform, Deconvolution, Transcriptome, DNA methylation, Omics integration, Cellular heterogeneity, Cancer
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要